CONCEPTUAL APPROACH TO SURVIVAL ANALYSIS
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B IVE
1. To describe the basic features of survival data.
2. To introduce the Kaplan-Meier survival curve.
3. To present the approaches for comparing two survival curves.

4. To provide motivation and summary of stratified analysis and Cox’s regression
analysis for survival data.
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Basic Features of Survival Data

1. Main interest focuses on the time taken for some event to
occur. Survival time is the time from some fixed starting
point to the onset of the event.

¢ In controlled clinical trials, time of entry to a study and
time of the event (death, MI, stroke, etc.) are recorded.

e In laboratory studies, often the starting time point is
the same for all the subjects and time of the event is

recorded.

2. The event of interest is almost never observed in all sub-
jects. The survival time is censored if the event is not
observed at the end of the study, to indicate the period of
observation was cut off before the event occurred.

e For example, in a study to compare the survival of
patients having different types of treatment strategies
for atrial fibrillation, although the patients will be fol-
lowed up for several years there will be many who are
still alive at the end of the study. The exact survival
times for those patients are unknown; it is only known
that their survival times will be longer than their times
in the study.

e Other reasons of censoring: withdrawal, leaving the
study because of moving to a different area. Censoring
due to reasons unrelated to the outcome of the study
is called independent censoring.



Examples

1. A hypothetical example. It illustrates the different ways
in which patients can proceed through a study. Patients
are recruited during a six month period and then followed
up for a minimum of 12 months. Thus the patients are
observed for between 12 and 18 months, the earliest accrued
patients being observed for the longest time.

2. A clinical trial investigating the effect of prednisolone for
patients suffering from chronic active hepatitis (Kirk, A.P.
et al., 1980).

e Forty-four patients with chronic active hepatitis were
randomized to either prednisolone (n = 22) or an un-
treated control group (n = 22).

e Outcome: Survival times and vital status.

3. A nonrandomized study comparing the immunotherapies
BCG (Bacillus Calmette-Geurin) and c. parvum (corynebac-
terium parvum) for their abilities to prolong remission and
survival times for melanoma patients.

e Thirty melanoma patients receiving either BCG or ¢
parvum were resected before the treatment began.
e Prognostic factors: age, sex, disease stage.

e Outcome:: disease free survival (survival without
relapse). survival time = minimum of time to relapse
and time to death.



Survival Curve

1. Motivation: To understand the survival experience of a
population in various time points.

2. Definition: The graphical presentation of the total survival
experience during the period of observation is called sur-
vival curve, and the mathematical presentation is called
survival function.

Survival function S(t) = probability of surviving beyond time ¢.
0< S(t) < 1.

3. Kaplan-Meier survival curve is the estimate of the sur-
vival function from the sample available.

~

S(t) = estimated percentage surviving beyond time ¢

( no. surviving beyond ¢ ) o
~ \no. surviving beyond t 4+ no. dead at ¢

estimated percentage surviving up to time ¢

( no. dead at ¢ )
1- — X
no. surviving beyond ¢ + no. dead at ¢

estimated percentage surviving up to time ¢



4. Illustration

Case I.
Subject Survival no. atrisk no. dead 1 — ff S'(tk)
no. (k) time (¢) (r&) (fe)
1 2 4 1 3/4 3/4
2 3 3 1 2/3  2/3x3/4=1/2
3 6 2 1 1/2 1/2 x1/2=1/4
4 7 1 1 0 0x1/4=0

Kaplan-Meier survival curve:
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Case II.

Subject no Survival mno. at risk no. dead 1— & S(t)

Tk

no. (k) time (¢¢) (7¢) (fk.)
1 2 4 1 3/4 3/4
2 3 3 1 2/3 2/3 x 3/4=1/2
3 6+ 2 0 1 1x1/2=1/2
4 T 1 1 0 0x1/2=0
Kaplan-Meier survival curve:
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5. Statistical inference:

e Estimate the probability of survival at a given time ¢,
S(t).
e Estimate the variability of S’(t) The variance of .§(t)
is asymptotically equivalent to
Var(S(t)) = S(1)* ¥ __B
ke <t Tk("k - fk)
6. Example 1.

¢ Data.

Patient Time at entry Time at death Dead or Survival time

(months) or censoring  censored
(months)
1 0.0 11.8 D 11.8
2 0.0 12.5 C 12.5
3 0.4 18.0 C 17.6
4 1.2 4.4 C 3.2
5 1.2 6.6 D 5.4
6 3.0 18.0 C 15.0
7 3.4 4.9 D 1.5
8 4.7 18.0 C 13.3
9 50 18.0 C 13.0
10 5.8 10.1 D 4.3




e Diagrams
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¢ Software: SAS, BMDP, SPSS, SPLUS.
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Comparison of Two Survival Curves

1. Comparing two survival curves at a given time point, .

e Forming a statistical hypothesis.

H() . Sl(t) = Sg(t)

H,:Si(t) # Si(t) two-sided
H,:S1(t) > S2(t) one-sided
H,:51(t) < S3(t) one-sided

e Calculating the Kaplan-Meier survival estimate at time
t for each sample, Si(t), Sa(t).
e Specifying the type I error (a).
e Calculating the test statistic,
_ St - 5()
- SE(S1(t) — 52(t)’

where

SE(S1(t) — $a(t)) = \fvar(81(2)) + var(Sa(2)).

Z approximately has a standard normal distribution
under Hj - reference distribution.

e If Z is in the upper or lower 100 x /2% (100 x o%
for one-sided test) of the reference distribution, then
we reject Hy.

e Calculating the p—value, the pro.bability of observing
a Z-value more extreme than the one from the current
sample if the null hypothesis is true.



2. Comparing two survival curves.

e Comparing the whole curves rather than a point.
e Logrank test (Mantel-Haenszel test).

— Arrange the distinct survival times from the two
groups in an ascending order, excluding censored
survival times: {t;,%s,---,tx}-

— At each time ¢;, construct a 2 x 2 table

No. dead No. surviving Total

Group 1 a; b; a;j + b;
Group 2 cj d; cj +d;
Total a; + C; bj + dj n;

If the null hypothesis is true, then the expected no.
of deaths at group 1, denoted by E(a;), is equal to

E(aj) = (a; + bj)(a; + ¢;)/n;,

a: 4+ bMa: 4+ c. )b + d- ¢; dj
Var(a;) = 47 a><1(+7-2j1_><11)% e +d5)

— Form K 2 x 2 tables, and calculate the test statistic
using the results from these tables.

7 - rhia; - E(a,-).
VI, Var(a;)

— Z approximately has a standard normal distribu-
tion under H,. .

— If Z is in the upper or lower 100 x /2% (100
% for one-sided test) of the reference distribution,
then we reject H,.

— Calculating the p—value.



3. Example 2 - patients with hepatitis.

e Data.
Control Prednisolone Control Prednisolone

survival times survival times survival times survival times

2 2 41 131+

3 6 54 140+

4 12 61 141+

7 54 63 143

10 56 71 1454

22 68 127+ 146

28 89 140+ 148+

29 96 146+ 162+

32 96 158+ 168

37 125+ 167+ 1734+

40 128+ 182+ 181+

e Calculating the Kaplan-Meier survival curve for each
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e Comparing the survival difference at 5 years (60 months).

Hy: S,(60) = S,(60)  H,: S(60) < Sp(60).
a = .05.

S.(60) = .4090  §,(60) = .7727.

SE(S5.(60) — 5,(60)) = .1377.

Z = —2.64. Compare Z with the lower 5th per-
centile of the standard normal distribution (= -
1.645). Reject the null hypothesis because Z <
—1.645.

p-value < .01 < .
e Performing the log-rank test.
Hy : Sc(.) = Sp(.), H,:Se(.) < Sp(.).

Z = 2.0. Compare Z with the upper 5th percentile
of the standard normal distribution (1.645). Reject
the null hypothesis because Z > 1.645.

p-value < a.



Other Topics

1. Stratified analysis.

e Motivation

— If important prognostic factors (covariates) are im-
balanced at the study entry between the two groups,
the survival analysis may be influenced by the dif-
ference observed in the prognostic factors.

Intervention Control
Young Old

The difference observed in the intervention and con-
trol groups may be due to the age difference. In this
case, the intervention effect and age effect are con-

founded. _
— The analysis may be biased.

— In large randomized clinical trials, prognostic fac-
tors are often balanced. But in nonrandomized
studies or studies of moderate size, the balance may
not be assured.

e Stratified logrank test

— Divide the data according to the levels of the signif-
icant prognostic factors (e.g. race, age group, etc.).

— Calculate the logrank test within each stratum and
accumulate the results over strata.

a;; = no. of deaths at time ¢; in the ith stratum.
7 _ ZiZ;sij — Blaij)
\/Ei ¥; Var(a;;)

Z approximately has a standard normal distribu-
tion.




2. Regression analysis

e Motivation

— If there are many prognostic factors, each with sev-
eral levels, the number of strata can quickly become
large with few patients in each stratum, resulting in
the loss of power in stratified analysis.

— If a covariate is continuous, it must be grouped into
intervals before it can be used in stratified analysis.

e Cox’s proportional hazards model

— It allows for analysis of survival data adjusting for
continuous and discrete covariates.

— Main assumption: proportional hazards model.
The hazard function, denoted by h(t), represents
the risk of having an event in a very short time in--
terval after surviving a given time t.
Proportional hazard means that the change in a
covariate (e.g. blood pressure) results in a propor-
tional change of the hazard in a log scale. Mathe-
matically the proportional hazards model is repre-
sented by

h(t) = ho(t) exp(By X =1 + - -- + Bp X Zp),

where hy(t) is called the baseline hazard, B¢, zi, k =
1,---,p are regression coefficients and covariates.

— It allows for the measure of the effect of a covariate
on the hazard expressed by the regression coeffi-
cient.



— Example: Consider only one covariate, systolic blood

pressure(BP).
h(t) = hy(t) exp(B; x BP).
Subject BP  hazard at time ¢ log(hazard)

A 110 ho(t) exp(,Bl X 110) log ho(t) + 1 x 110
B 130 ho(t) exp(Br x 130) logho(t) + 51 x 130

The change of log hazard = 3 x (130—110) which is
the change of the blood pressure times 3; and does
not depend on t.

— The proportional hazards assumption may be vio-
lated.

— Estimation of the regression coeflicients is complex
but is available in most statistical software (SAS,

BMDP, SPSS, SPLUS). ome software provides di-

agnostics for checking the assumption.

— The estimate of each regression coefficients S has
approximately a normal distribution. The Z statis-
tic

~

__B_
SE(B) |
has a standard normal distribution under the null
hypothesis Hy : f = 0 implying no covariate effect.

3. Example 3.

Treatment: immunotherapies BCG (1) or ¢. parvum
(0).

Covariates: age at the entry of the study (year), gender
(1: male, 0:female), disease stage (2-4).



Patient Age Gender Disease Treatment Survival

stage  received times
(months)
1 59 0 3 1 33.7+
2 50 0 3 1 3.8
3 76 1 3 1 6.3
4 66 0 3 1 2.3
5 33 1 3 1 6.4
6 23 0 3 1 23.84+
7 40 0 3 1 1.8
8 34 1 3 1 5.5
9 34 1 3 1 16.6+
10 38 0 2 1 33.7+
11 54 0 2 1 17.1+
12 49 1 3 0 4.3
13 35 1 3 0 26.9+
14 22 1 3 0 21.44
15 30 1 3 0 18.1+
16 26 0 3 0 5.8
17 27 1 3 0 3.0
18 45 0 3 0 11.0+
19 76 0 3 0 22.1
20 48 1 3 0 23.0+
21 91 1 4 0 6.8
22 - 82 0 4 0 10.8+4
23 50 0 4 0 2.8
24 40 1 4 0 9.2
25 34 1 3 0 15.9
26 38 1 4 0 4.5
27 50 1 2 0 9.2
28 53 0 2 0 8.2+
29 48 0 2 0 8.2+
30 40 0 2 0 7.8+




¢ Estimation results.

B__SE) z
Age 0102 0129 .788

Gender 3317  .5700 .582
Disease stage 1.4115 1.0673 1.323

Treatment  .3240 .5357 .605

Hy:6,=0,k=1,---,4, H,: B #0.
a = .05.

None of the covariates are significant when comparin
|Z| values to the upper 2.5 percentiles of the standard
mal distribution (= 1.96).



Summary

e We described the basic features of survival data

— Time to event data
— Censoring

— Kaplan-Meier survival curve

e We introduced approaches for comparing the two survival
curves

— point by point comparison

— whole curve comparison - logrank test
e Other topics
— Stratified logrank test

— Cox’s regression analysis



